On the Krohn-rhodes Complexity of Semigroups of Upper Triangular Matrices

نویسنده

  • Mark Kambites
چکیده

We consider the Krohn-Rhodes complexity of certain semigroups of upper triangular matrices over finite fields. We show that for any n > 1 and finite field k, the semigroups of all n × n upper triangular matrices over k and of all n × n unitriangular matrices over k have complexity n− 1. A consequence is that the complexity c > 1 of a finite semigroup places a lower bound of c+1 on the dimension of any faithful triangular representation of that semigroup over a finite field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Lower Bound for Group Complexity of Finite Semigroups and Automata

The question of computing the group complexity of finite semigroups and automata was first posed in K. Krohn and J. Rhodes, Complexity of finite semigroups, Annals of Mathematics (2) 88 (1968), 128–160, motivated by the Prime Decomposition Theorem of K. Krohn and J. Rhodes, Algebraic theory of machines, I: Prime decomposition theorem for finite semigroups and machines, Transactions of the Ameri...

متن کامل

On semigroups with PSPACE-complete subpower membership problem

Fix a finite semigroup S and let a1, . . . , ak , b be tuples in a direct power S. The subpower membership problem (SMP) for S asks whether b can be generated by a1, . . . , ak. For combinatorial Rees matrix semigroups we establish a dichotomy result: if the corresponding matrix is of a certain form, then the SMP is in P; otherwise it is NP-complete. For combinatorial Rees matrix semigroups wit...

متن کامل

Wreath Product Decompositions for Triangular Matrix Semigroups

We consider wreath product decompositions for semigroups of triangular matrices. We exhibit an explicit wreath product decomposition for the semigroup of all n× n upper triangular matrices over a given field k, in terms of aperiodic semigroups and affine groups over k. In the case that k is finite this decomposition is optimal, in the sense that the number of group terms is equal to the group c...

متن کامل

The pseudovariety of semigroups of triangular matrices over a finite field

We show that semigroups representable by triangular matrices over a fixed finite field form a decidable pseudovariety and provide a finite pseudoidentity basis for it. Background and motivation The main results of this paper were motivated by one of the fundamental theorems of Imre Simon, namely, by his elegant algebraic characterization of the class of piecewise testable languages [21, 22]. Th...

متن کامل

On the fine spectrum of generalized upper triangular double-band matrices $Delta^{uv}$ over the sequence spaces $c_o$ and $c$

The main purpose of this paper is to determine the fine spectrum of the generalized upper triangular double-band matrices uv over the sequence spaces c0 and c. These results are more general than the spectrum of upper triangular double-band matrices of Karakaya and Altun[V. Karakaya, M. Altun, Fine spectra of upper triangular doubleband matrices, Journal of Computational and Applied Mathematics...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAC

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2007